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Weak quadratic interactions of two-dimensional waves 

By YOUNG YUEL KIM AND THOMAS J. HANRATTY 
Department of Chemical Engineering, University of Illinois, Urbana, Illinois 

(Received 9 April 1970 and in revised form 24 February 1971) 

This paper reports on weak quadratic interactions which can occur with two- 
dimensional waves on shallow water layers and in the capillary-gravity range 
on deep water layers. It supplies experimental support of theoretical predictions 
for resonant interactions, but, perhaps of more significance, it explores in detail 
interactions which occur under conditions near resonance. 

Waves of approximately sinusoidal form are introduced on the surface of water 
in a long rectangular tank. For deep water a rapid distortion in the sinusoidal 
wave and sometimes additional crests are observed because of energy exchange 
among the first, second and third harmonics at frequencies where both surface 
tension and gravity are important (7.5-13 cis). An even greater exchange of 
energy can be observed on shallow water layers at low frequencies. For example, 
a wave train with seven secondary crests can be observed when the wave maker 
is operated at  3-04 c/s in a water layer of 0.65 cm. 

Measured amplitudes and phase angles of the Fourier components of the wave 
train are described by a system of equations using only quadratic interactions 
among participating harmonics. The exchange of energy among Fourier com- 
ponents under certain conditions is explained in terms of the rate of change of 
relative phase angles of the different harmonics. 

1. Introduction 
The surface profile of waves propagating at a gas-liquid interface may be 

viewed as consisting of a number of Fourier components. One of the salient 
features of finite amplitude waves is that these Fourier components can exchange 
energy. In  1960, Phillips introduced the notion that energy exchange can be 
greatly facilitated by a resonant interaction. He considered gravity waves and 
showed that such interactions can occur a t  third order on deep water and at  
second order on shallow water. McGoldrick (1965) later found second-order 
resonance for capillary-gravity waves on deep water. 

Resonance theory has been exploited in a number of laboratory investigations. 
Benjamin & Feir (1967) carried out experiments which show that finite amplitude 
progressive gravity waves are unstable because of third-order resonant inter- 
actions between the primary Fourier harmonic and side-band frequencies. 
McGoldrick, Phillips, Huang & Hodgson (1966) and Longuet-Higgins & Smith 
(1966) have measured the initial growth of a free gravity wave formed on deep 
water by the resonant interaction of two primary free oscillations. McGoldrick 
(1970) succeeded recently in demonstrating the resonant interaction of two- 
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dimensional capillary-gravity waves on deep water at n = g/k2T = 2 (9.85 CIS for 
water at  25 "C), where L is the wave-number, g the acceleration of gravity, and 
T the quotient of the surface tension and the density. 

This paper reports on weak quadratic interactions which can occur with waves 
on shallow liquid layers and with waves in the capillary-gravity range on deep 
liquid layers. It demonstrates that significant interactions are not confined just 
to resonance conditions, but are realizable over a range of frequencies in the 
neighbourhood of resonance. Results on resonant interactions, presented in this 
paper as a special case, extend the recent study of McGoldrick (1970) in that the 
effect of depth on resonance is examined and phase angles as well as amplitudes 
of interacting components are measured. Some of the difficulties experienced 
by McGoldrick with respect to surface contamination were avoided; because of 
this the second harmonic was not dampened as rapidly and a more direct com- 
parison between theory and experiment is possible. 

We present results on both stationary and transient wave phenomena. In 
the experiments on stationary phen.omena waves were generated by an oscillating 
dipper in the centre of a long rectangular tank containing water and the surface 
proftle was studied a t  different distances from the dipper by measuring the 
amplitudes and phase angles of the Fourier harmonics. The dipper motion wa9 
carefully controlled so that the wave profile near the dipper was very close to a 
sinusoidal shape and absorbing beaches were located at  both ends of the tank. 
In  the transient experiments an amplitude modulated sinusoidal wave packet 
was introduced on the water by a high potential electric field. 

If the dipper is operated at 54s in a deep water layer the wave profile at  
different distances from the wave maker does not change its form dramatically. 
If the frequency of the dipper is increased so that surface tension becomes more 
important, higher-order harmonics appear near the wave maker and these can 
be large enough that additional crests are observed. These effects are particularly 
evident close to the second-order resonance condition, n = 2,  where there is a 
monotonic transfer from the first to the second harmonic; but, in general, they 
are observed over a frequency range which depends on the initial wave steepness. 
Waves of permanent form of the type predicted by Wilton f 1915) and by Pierson 
& Fife (1961) were not realized since the specific initial conditions required for 
waves of permanent form were not met. All waves with additional crests were 
found to change their shapes continuously as they propagated downstream. In 
the transient experiments dramatic changes in the wave packet occurred close 
to n = 2. Initially the sinusoidal waves were distorted by the growth of the 
second harmonic; this harmonic propagated faster than the primary and con- 
centrated in the front part of the packet. 

The resonant frequency at which a large monotonic transfer of energy from 
the first to the second harmonic occurred could be decreased by using a shallow 
liquid layer. However, if the layer was too shallow, growth of higher harmonics 
obscured this clear-cut transfer from the first to the second harmonic. The large 
exchange of energy in shallow layers can be demonstrated either by decreasing 
the frequency of the dipper, keeping the water layer a t  a constant height of 
about 0.75 cm, or by decreasing the height of the water layer while the frequency 



Weak quadratic interactions of two-dimensional waves 109 

of the dipper is at 5 cis. Consider the latter case. At a height of about 1 cm very 
little distortion of the sinusoidal wave is observed. At heights between about 
0.7 and 0.85 cm rt large growth of second harmonic occurs near the wave maker. 
At greater distances from the wave maker progressively higher harmonics appear 
in the wave pattern. For example, at  a height of 0.79 cm waves with five crests 
are observed over the period of the wave maker a t  a distance of 26 cm from the 
wave maker. As the layer height is decreased further the number of harmonics 
that are present in the pattern in significant amounts decreases. 

The surface displacement 7 may be described by the equation 
N 

a =O 
7 = Xaa,cos(ao+ya)> (1) 

where a, is the amplitude of the ath harmonic, 0 = kx - wt, k is the wave-number, 
w the frequency, x the co-ordinate in the direction of propagation, t the time 
and ya the phase angle. The experiments are interpreted by a system of quadratic 
interaction equations derived by assuming that a, and ya in (1) are functions 
of time. The calculated variations with respect to time are related to the distance 
from the wave maker by use of a group velocity. The effects of viscosity are 
assumed to be independent of the non-linear interactions. Equations for the 
variation of a, and y, with time are obtained by making use of the assumption 
of irrotational flow and the non-linear boundary conditions at the interface, as 
proposed by Simmons (1969). The chief differences are that a priori assumptions 
about the magnitude of the a,’s are not made and that the resulting equations 
can be applied over a range of frequencies, including the resonance case. 

In  the context of this formulation the large exchange of energy among Fourier 
components observed under certain conditions is explained in terms of the rate 
of change of the relative phases of the different harmonics. 

2. Inviscid analysis 
In  developing the interaction equations we found it more convenient to repre- 

sent the displacement q(x, t )  and the velocity potential @(z, y, t )  by Fourier 
series with complex coefficients. Hence 

N cash 
+ h, eiae + complex conjugate, 

@ ‘zFa sinhakh 

where his the depth of the water, A,  and B, are functions of time and * designates 
the complex conjugate. The amplitudes and phase angles of various harmonics 
are then expressed as at = 4Az A,, (4) 

Ya = COS-’(~A,R/~~), ( 5 )  
where A,, = &(A, +A,*). A system of differential equations for the coefficients 
A ,  may be obtained by substitution of (2) and (3) into the non-linear boundary 
conditions 

(6) 
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(7) 
aq a@ a7 acD a2a 

at ax a ~ + ~ + ~ q  = ‘3 

---- 

to be satisfied a t  y = 0. Triple product terms are neglected in (6) and (7) since 
the experimental results are to be interpreted only in terms of quadratic inter- 
actions. From (2), (3) and (7) the Ba’s can be expressed in terms of the As's 
and their derivatives. Using this result and (6) the following differential equations 
have been derived for the variation of A,  with f [ ,  where = wt. 

A , ,  = 4ik(PlA:A,+P,A,*A,+P,A,*A,) = right-hand side of ( I ) ,  

A , ,  = iL,A, - 2ik(P4A2,+ P5AF A, + P,A,*A,) = right-hand side of (2), 

J P, = (1/8[3K]) (9[K] [3K] + 12[K] [4K] + 36[3K] [4K] - 39), 

Pg = (1/8[4K]) (16[K] [4K] + 48[3K] [4K] + 12[K] 3[K] - 52), 

P,, = (1/8[4K]) (32[2K] [4K] + 8[2KI2- 24). 

Here [aK] = cothakh. 
It is to be noted that second derivatives A , ,  and non-linear terms like A,,,A: 

are neglected compared to A,,,. This simplification can be justified by using a 
two-time scale expansion discussed by Benney (1962) and Bretherton (1964). 
A more direct confirmation of the accuracy of this assumption can be obtained 
by comparing, for a number of cases, numerical integrations of the complete 
equations with numerical integrations of the simplified equations (Kim 1970). 
Results for n = 2 for an initially sinusoidal wave with ka, = 0.1 are shown in 
figure 1. 

Because of the complexity of the algebra, we have considered only the fht  
four harmonics. Therefore equations (8) will not describe situations where fifth 
or higher harmonics become significant. These equations can be accurate only 
to second order, 0 ( c 2 ) ,  where E = ka, and a, is the Fourier component with the 
largest amplitude. Some of the quadratic products are of much higher order 
than second, and further simplification of (8) is possible if we apply assumptions 
about the order of magnitude of some of the Fourier components, but this method 
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of ordering will depend on the frequency and on the height of the liquid layer 
so the simplified form of (8) will depend on the conditions being considered. Since 
we are interested in interpreting experiments which cover a wide range of variables 
and since we shall be considering cases in which higher harmonics grow to the 
same magnitude as the fist, we have not found it convenient to attempt any 
further simplification of (8). 

The first approximation of the total wave energy associated with the ath 
harmonic averaged over one wavelength is 

where 

E, = aI,az, 

(13)  

and p is the fluid density. The following relations are obtained from equations (8) 
and their complex conjugates: 

From (14) we can see that the rate and the direction of energy exchange depend 
on the relative phase angles of different Fourier harmonics. For example, when 
only the primary and the secondary harmonics are considered, the maximum 
rate of energy exchange between the f i s t  and the second harmonic occurs when 
the relative phase angle (y, - 2yl)  is equal to 5 in. To have a large net transfer 
of energy between Fourier harmonics it is necessary not only to have a favourable 
phase-angle relation but also a slow rate of change of the relative phase angles. 
If the time constant governing the cyclic change of the relative phase of the 
different harmonics is small compared to l/w, then any transfer of energy from 
one component to the other during part of the cycle is counterbalanced by transfer 
in the opposite direction during the other part of the cycle. If this time constant 
is large compared to 110, then there can be a relatively large net exchange of 
energy. The rate of change of the phase angles can be derived from (5) and (8). 
From (5) we have 

-- dya 4(AaiAaR,E- AaRAai,,) 

d t  - a: 
9 

where Aai = $i(AZ-A,). We assume that the A,’s are not zero and eliminate 
Aai,, and A,,,, by using (8) to obtain 
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which may be interpreted as a correction to the linear dispersion relation (Sim- 
mons 1969), and 

The first terms on the right side of (17) are independent of the amplitudes 
and will be designated the linear terms. When L, vanishes, the ath harmonic 
is a free oscillation; i.e. ak and aw satisfy the linear dispersion relation (9). 
The rate of change of the relative phase angles appearing in (14) can now be 
calculated from (16) and (17). For example, the rates of change of (y2-22y1) 
and (y3 - y2 - yl) are 

I + (?rg&+rn3!3%) cos(y3-y2-y1) 
a2 3a3 

It is seen from (18) that the relative phase angles can change both because of 
linear terms, AL,, and non-linear terms which depend on the amplitudes of the 
participating Fourier components. Since the experiments are carried out under 
conditions such that the initial a,k is a small number, the non-linear terms are 
small over most of the cycle of energy exchange. They are large only during time 
intervals when the amplitude of one of the harmonics is close to zero. The changes 
that occur here correspond to the staircase-like phase angle relation with jumps 
of n at the zeros of a2 discussed by Simmons (1969) for his case of C + 0. Consider 
the first of (1 8) at = 0 when the wave on the surface is sinusoidal: 

where P4(a2,/a2) is a very large number. For L, = 0, (19) is the same equation 
considered by Simmons (1969). In order to illustrate the behaviour of (19) we 
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will use the following equation which is a reasonable model provided M is a large 
number but not infinite: 

I 1 I 

0.04 

"0 5 0  100 

ot 

150 

FIGURE 1. Calculated variations of amplitudes for n. = 2, kcz1 = 0.1. -, simplified 
using 2 time scales; - -, complete equations. 

When a2 -+ 0 the relative phase angle (yz - 2yl) is predicted to approach - 4. 
at an exponential rate where a maximum rate of growth of the second harmonic 
is predicted by (14). If L, = 0 and only the fist two harmonics are considered, 
( y2 - 2y1) does not deviate from - &n and there is a monotonic transfer of energy 
from the first to the second harmonic. This is the case studied experimentally 
by McGoldrick (1970) on a deep water layer. Kim (1970) studied (18) numerically 
and found, as indicated by the model equation, that initial interactions adjust 
all relative phase angles to -in. Simmons (1969) has also discussed solutions 
of (18) for which yi = constant and the relative phase angles are zero but these 
require particular initial conditions which were not realized in our experiments. 

In  summary then, the principal influences of non-linear interactions on the 
change of the relative phase angles are to shorten the cycle of change from that 
which would be predicted by the linear terms, AL,, and, more important, to 
adjust initially the relative phase angles to conditions which are favourable 
for the growth of higher harmonics. After the initial adjustment of the relative 
phase angles further change is governed by the size of AL,. If AL, is small 

8 F L M  50  
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enough, the relative phase angle will not change too rapidly from its favourable 
value and significant growth of the a harmonic is possible. 

Since we are considering only quadratic interactions, growth of a higher 
harmonic is not possible unless all lower harmonics are present. This can readily 
be seen from (14). Hence, to have a large growth of the a harmonic the linear 
terms IALal on the right side of (18) should be small for all p 6 a. From ex- 
periments to be described later, it was deduced that [ AL,I should be less than 
0.2 when the steepness of the initial sinusoidal wave is in the range 0.05 < 8 < 0.1. 

1.5 

1.0 

0.5 

I I 
5 10 

Frequency (c is )  

FIGURE 2. Ranges of the growth of higher harmonics. 

On the basis of this criterion conditions which are favourable for the growth of 
a certain harmonic or lower ones have been mapped in figure 2. The numbers in 
figure 2 indicate the highest harmonic that should be observed in significant 
amounts. It is not clear that the results on the figure to the left of the curve 
h/h = 0.1 are valid since De (1955) has indicated that a Stokes expansion should 
not be used to describe waves for which h/h < 0-1. 
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The curve L, = 0 in figure 2 shows the decrease of the second-order resonance 
frequency with the height of the liquid layer. In order to obtain some under- 
standing of the experimental observations on shallow liquid layers, it  is of 
interest to examine the behaviour of L, for small values of kh : 

0.5 

0 

- 0.5 

- 1.0 

. . . 
h=0.75 cm 

5 10 15 

Frequency (c is)  

FIGURE 3. Linear terms for water at 25 "C. 

As already noted by Phillips (1960), La approaches zero for all a as kh --f 0 
(or w -+ 0). This means that all of the lAL,l approach zero for small frequencies 
and that conditions are favourable for the simultaneous growth of a large number 
of harmonics. It should be noted from (22) that the rate of change of La at small 
kh depends on the depth. At the particular depth h, = (3T/g)), La varies as (kh)4 
and one can expect La to depart from zero with increasing frequency more 
slowly than at any other depth. This is reflected in figure 2 by a predicted growth 
of higher harmonics over a relatively large range of frequencies in the neighbour- 
hood of h, (0.48 cm for water). Figure 3 shows plots of IALaI for a water depth of 
0.75cm. It can be seen that at this depth the are small enough to be 
favourable for the growth of the first five harmonics over the frequency range 
of 0 to 5 CIS. 

8-2 
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The simultaneous growth of higher harmonics at  shallow depths is further 
enhanced because the interaction coefficients increase markedly with decreasing 
depth, as is indicated in figure 4. This arises because at the same wave steepness 
fluid velocities are larger in shalIow layers than in deep layers. 

0 5 10 

Frequency (c/s) 

FIGURE 4. Interaction coefficients for h = 0.75 om at 25 "C, 
normalized with respect to the case h = m. 

The interpretation presented in this section neglects the direct formation of a 
harmonic by interactions of more than two components. It is therefore appro- 
priate to examine the magnitude of this error. The most important triple product 
term is A: and its effect will be largest at L, = 0, where the third harmonic is a 
free oscillation and A,  can grow through the quadratic interaction term A I A ,  
in (8) and through the resonant third-order interaction A:. If the A: term is 
retained in the analysis, the following simplified equations can be obtained to 
describe the initial growth of the second and third harmonics from the first 
harmonic: A , ,  2: - 2ikP4Ai, (23) 

(24) A , ,  N - 3kP7 A1 A ,  - Qik2P13 A:, 
where 

P13 = (1/8[3K]) {33[K] + 9[3K] - 12[KI2 [2K] - 36[K] [2K] [3K] + 9k2T/u2). 
At the initial stage of the interaction A ,  can be approximated by a constant and 
a simple integration of (23)  yields 

A,  2: kA;( -$P7P4E2- $iP13E). (25) 
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This equation shows that for f > c,, = IP13/2P4P71 the quadratic interaction 
dominates the third-order resonant interaction. The values of to = &,/w are 
0.012 sec for deep-water waves and 0.018 sec for shallow-water waves on a layer 
of depth 0.75 cm. Thus, almost immediately after the introduction of a sinusoidal 
wave, quadratic interaction determines the growth of the third harmonic. More 
conclusive support for the neglect of triple product terms can be obtained when 
the effects of viscosity are considered since it is found that the ratio of the rate of 
production of A ,  to direct resonant interaction is small compared to its rate of 
dissipation by viscosity. This can be shown by adding the term - $ik2 Pl3A? to 
the right-hand side of the viscous equation (29 )  below. Numerical integrations 
of (29)  with and without this term reveal negligible differences. 

3. Effect of viscosity and the relation between temporal and spatial 
variations 

In  order to introduce viscous effects in the analysis, it is assumed that the decay 
of each Fourier component proceeds independently and that it is given by linear 
theory. A similar approach has been used by McGoldrick (1965, 1970). The 
justification for these simplifications is the agreement between predicted and 
observed wave damping obtained in the experiments. 

For a slightly viscous fluid, linear theory predicts 

dAa/dt = - Q A,, (26) 

(27)  
2a2k2v + (va/8w3)4 k2(g + a2k2T) sechzakh 

1 - (va/2w)4 k tanh akh where 5a = 

This includes viscous effects due to the bottom boundary layer and it reduces to 

Ca = 2 ~ 2 k 2 ~  ( 2 8 )  

for deep-water waves. Since viscous dissipation is assumed to be independent 
of the interactions, (8) may be modified as follows: 

A , ,  = - (Q/w) A,+right-hand side of (a). (29 )  

Due to viscosity the amplitudes undergo damped oscillations and the clear-cut 
cycles of energy exchange predicted by inviscid theory cannot be observed. 

In  order to compare (29)  with experimental results it is necessary to relate the 
temporal variations with observed spatial variations. Simmons ( 1969) showed 
that for resonant triads the spatial and temporal variations are related through 
group velocities. This is also true for a system which includes forced oscillations 
if the group velocity for the ath Fourier harmonic is defined as follows (Kim 1970): 

C,, = (1/2wk) (2k3aT tanh akh + 2akhw2 cosech 2akh + w2), (30) 

where C,, = dw/dk is the linear group velocity of the first harmonic. When only 
spatial variations are considered (26)  becomes 

1 
(31)  A =-- ‘a A ,  +-right-hand side of (a), a, x 

09, cga  
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and when both spatial and temporal variations are considered, 
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C 
A,,,+$ = -& A,+right-hand side of (a). 

w 

Equations (32) are a hyperbolic system of standard form and may be integrated 
along the characteristic lines to describe transient wave systems if initial con- 
ditions are given. 

4. Description of experiments 
The experiments were performed in a Plexiglas tank 30ft long, 1 f t  wide and 

8 in. deep that rests on specially designed spring mounts to isolate it from building 
vibrations. The water level in the tank was maintained a t  34 in. during experi- 
ments. A stainless screen beach was placed at each end of the tank to absorb 
the incident waves. 

It was important to have the interface clean in order to  properly account for 
the dissipation of wave energy. Distilled water was used in all runs. A small 
amount of sodium chloride (about 0.08 g/l.) was added to increase the electrical 
conductivity of the liquid. The tank was kept covered to prevent surface con- 
tamination and cooling of the interface due to evaporation. Before each experi- 
ment the surface of the water was swept clean by a boom that travelled along the 
entire length of the tank. 

Surface elevations were determined by measuring the resistance between two 
parallel 0.001 in. platinum wires that were supported by a gauge-20 hypodermic 
needle immersed l in.  below the water surface. This probe assembly could be 
moved along as well as across the tank to measure the instantaneous surface 
elevation at any desired location. A loop circuit, which consists of a 50-ohm 
resistor in series with the resistance formed between the probe wires when they 
are immersed in water, was activated by a 5 kHz and 20 V peak-to-peak sinusoidal 
carrier signal. The signal from the 50-ohm resistor was demodulated to obtain 
a voltage signal which a static calibration showed to be proportioned to the dis- 
placement of the liquid interface. For the shallow-water experiments a platform 
4ft long was placed inside the wave tank and the wave maker was operated at  
one end of this platform. Wires having diameters 0.003in. were used in the 
resistance probe. Although no controlled experiments were performed to check 
the dynamic response of the probe, it was thought that hysteresis effects were 
not important. This was justified by the observations that under conditions 
where interactions were unimportant symmetric sinusoidal wave shapes were 
recorded by the probe, and that the number of crests detected by the probe 
agreed with that observed visually. 

In  the experiments with wave packets a high potential electric wave generator 
was used. A brass bar of in. diameter was placed across the tank about 5 mm 
above the water surface. An alternating electric field, with a maximum peak- 
to-peak voltage of 5 kV, superposed on a 9 kV steady field was applied between 
the electrode and the water. By modulating the alternating field an amplitude 
modulated wave packet could be introduced on the water surface. The signal 
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from the resistance probe was sent to a detector to remove the 5kHz carrier 
and the modulation signal was passed to a Honeywell Visicorder (model 906) 
for display of the wave packet profile as a function of time at a given location 
from the wave maker. 

I n  steady-state experiments waves were generated by a half immersed Plexiglas 
dipper of &in. thickness that extended over the whole width of the tank and was 
located in the centre of the tank. This dipper was connected to a cam assembly 
which was driven by a d.c. motor. By adjusting the eccentricity of the cam 
assembly the stroke of the wave maker was varied for different operation fre- 
quencies to ensure the two-dimensionality of progressive waves. The motion of 
the wave maker could be monitored by attaching a small magnet on the vertically 
moving part of the cam assembly. The current from a coil which surrounds the 
magnet was sinusoidal. 

Oscillator 
20 v 

peak-to-peak 
5 kHz 

r 
4 Wave profile Amplifier Oscilloscope 

x 100 camera 

t 

Resistance Amplifier ’ XlOOo > Detector . * probe ’ 

Wave profile 
Amplifier Oscilloscope 

camera 

Amplitudes 
of Fourier c 
harmonics voltmctcr 

d.c. Fo, Fo, 3F0, 

etc. 
Converter Filter 

Wavetek Reference 
S@40Fo , square- Fo. ~ F o ,  3F0. Phase 
signal wave 
supply generator 

etc, comparator 
Relative phase 

angles -+ 

back signal 

FIGURE 5 .  Schematic diagram for wave measurements. 

A reference signal generator was built to get square signals which have 
frequencies of Fl to 10Fl, where Fl denotes the frequency of the wave maker. 
A rotating disk attached to the shaft of the motor had eight evenly spaced slits. 
A light passed through these slits and activated a photocell which generated a 
signal with a frequency of SFl. The speed of the motor was controlled by oom- 
paring this signal to the SFl square reference signal. 

The demodulated signal from the detector was amplified and displayed on an 
oscilloscope to take pictures of the wave profile at a particular distance from the 
wave maker. The signal was also sent to a two-channel filter unit to separate it 
into different harmonics by tuning the filter to the frequencies of desired har- 
monics. The separated Fourier harmonics were sent to a phase comparator and 



120 Y .  Y .  Kim and T .  J .  Hanratty 

to an a.c./d.c. converter. The d.c. level of the signal was measured with a vacuum- 
tube voltmeter. In  the phase comparator the phases of different harmonics were 
measured relative to the reference square waves of corresponding frequencies 
coming from the reference signal generator. The wavelength of the progressive 
wave could be determined by measuring the distance over which a change of 
360" occurred in the phase angle of the first harmonic with respect to a reference 
square signal to which the motor was phase locked. Figure 5 shows a schematic 
of the procedure used in our measurements. 

C I S  

n 
"C 
ka, 

I 

10.46 9.96 
1.76 1.98 

25.4 29.1 
0.045 0.061 

8.40 7.57 
2.99 4.02 

0.049 0.063 
24.0 26.1 

FIGURE 6. Changes of wave profiles on deep water as functions of 
distance from the wave maker. 

5. Results on stationary deep-water waves 
When the dipper was operated so that the wave steepness ka, was about 0.05 

the interface close to the wave maker was sinusoidal. At frequencies in the gravity 
range or in the capillary range the form of the waves at  different distances from 
the wave maker did not change dramatically. However, over a range of fre- 
quencies where both surface tension and gravity are important, 7-5-13 c/s, the 
type of change depicted in figure 6 was observed. 

At frequencies 9-3-13 c/s, except very close to 9.9 CIS, a cyclic growth and decay 
of the second harmonic occurs. One of these cycles is shown in figure 6 for 
n = 1.76 (10.46c/s). This cyclic change can be explained by equations (18) be- 
cause for n = 1.76 the linear term L, describing the change of (7, - 27,) is large 
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enough to cause a rapid cycle of change but not so large as to nullify energy 
exchange between the first two harmonics. For n = 1.98 (9*96c/s) L, N 0 and 
therefore (y2 - 2y,) deviates slowly from the favourable phase angle initially 
set up by non-linear interactions. This facilitates a large and almost monotonic 
drainage of energy from the first to the second harmonic. The two additional 
crests evident in the wave profiles for the case of n = 2.99 (8*4c/s), L3 N 0, 
indicate a growth of third harmonic. As discussed in 9 2 and indicated in figure 2, 
this arises because L, and (L3-L2) are small enough to ensure a slow change of 
both (y2 - 2yJ and (y3 - y1 - y,). As n increases the wave profile does not change 
as dramatically. A slight distortion of the wave profile is seen for the case of 
n = 4.02 (7-57 G/s). The effects of viscous damping are shown in figure 6 by thede- 
crease in the amplitude of the wave structure with distance from the wave maker. 

0 

- 

0 0 0  

" 0  10 20 30 40 50 

Distance from wave maker (cm) 

F I G ~ E  7. Observedvariations of Fourier harmonics for n = 1.41 (1 1.48 cis) ,  E = ka, = 0.0793, 
temperature = 26.2 "C.  -, predicted; 0 ,  a, measured. 

Frequency 

11.48 
10.44 
9.91 
8.69 
6.97 
4.46 
3.56 
6.16 

(c is )  

Wavelength (cm) 
Depth r h > 

(em) Linear theory Measured 
Infinite 2.020 2.007 
Infinite 2.247 2.207 
Infinite 2.390 2.393 
Infinite 2.818 2.873 

0.73 3.461 3.452 
0.77 5.809 5.965 
0.754 7.439 7.562 
0.75 4.009 4.014 

TABLE 1 
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Measured values of the amplitudes of the different Fourier harmonics are 
shown in figures 7, 8 and 9 for n = 1-41, n = 1-98 and n = 2.75. The solid curves 
were calculated using equations (29) with initial conditions indicated by double 
circles. Measured values of the relative phase angle (yz - 27,) are shown in 
figures 10, 11 and 12 along with curves calculated from equations (5) and (29). 

Distance from wave maker (em) 

FIGURE 8. Observed variation of Fourier harmonics for n = 1.98 (9.91 cis), 
e = ka, = 0.0605, temperature = 26.8 "C. -, predicted; 0 ,  a, measured. 

I I I I I 1  

9 0.02 I 

0 I 

0 10 20 30 40 

Distance from wave maker (cm) 

FIGURE 9. Observed variation of Fourier harmonics for n = 2.76 (8-69c/s),  
8 = ha, = 0-0761, temperature = 26.2 "C. -, predicted; 0 ,  A, 0, measured. 



0 10 20 30 

Distance from wave maker (cm) 

FIGURE 10. Observed variation of the relative phme angle for .n = 1.41. 
-, predicted; 0 ,  measured. 

I I I I 

0 

I I I I 

0 10 20 30 40 

Distance from wave maker (cm) 

123 

FIGURE 11. Observed variation of the relative phase angle for n = 1.98. 
-, predicted; 0 ,  measured. 

Average wavelengths measured over the test section as described in the previous 
section are given in table 1. These lengths are found to be related to the frequency 
of the wave maker through the linear dispersion relation (9). 

The case of n = 1.98 corresponds roughly to the resonance condition. In 
agreement with the discussion in $2, figure 11 shows that ( y 2 - 2 y l )  initially 
adjusts itself to - in, the condition most favourable for energy transfer between 
the first and second harmonic. After a2 has grown to a significant amount the 
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influence of non-linear interactions on the rate of change of ( y 2 -  27,)  is small. 
Since L, N 0 the relative phase angle remains approximately - &IT for the entire 
range of observation and there is a monotonic drainage of energy from a, to a2. 
The growth of a2 is limited because of viscous dissipation. These experimental 
results supply further confirmation of the theoretical and experimental descrip- 
tion of resonant interaction in capillary-gravity waves given by McGoldrick 
(1965, 1970) and by Simmons (1969). 

0 

I I I 

10 20 30 40 

Distance from wave maker (em) 

FIG~RE 12. Observed variation of the relative phase angle for n = 2.75. 
-, predicted; 0 ,  measured. 

The data for n = 1.41 shown in figures 7 and 10 gives more insight into the 
interesting phenomenon of cyclic energy exchange. A comparison of figures 7 
and 10 indicates that the period governing the cycle of energy exchange between 
the first and the second harmonic is the same as the period for the change of 
relative phase angle. A complete cycle of change of ( y 2  - 27,) for pure capillary 
waves is calculated to occur in 2.5 wavelengths and, for pure gravity waves, 
1 wavelength. As indicated in figure 10, (7, - 27, )  undergoes a complete cycle of 
change for n = 1-41 over a distance of about 10 wavelengths. This is in rough 
agreement with the value of 11 wavelengths calculated from (1 8) by neglecting 
non-linear interactions. Prom figure 10 we see that there is a rather rapid initial 
change of (y2 - 27, )  in the direction of (7, - 2 7 , )  = - +n due to non-linear interac- 
tions. When the amplitude a2 becomes sufficiently large, or when ( y 2  - 27,) E in, 
the change of ( y z  - 27, )  is controlled by the linear term L, in (18). The amplitude 
of a2 increases until (7, - 27,) reaches a value of - IT at a distance of about 10 cm. 
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As indicated by (14), there is a transfer of energy from the second to the first 
harmonic for (y2 - Zy,) between - 7~ and - 2n. At a distance of about 20 cm a2 
falls to a very small d u e  so that non-linear interactions rapidly adjust (y2-  27,) 
to a value of - +r which is again favourable for the transfer of energy from the 
first to the second harmonic. The cycle of change is then repeated. It can readily 
be seen from the above discussion how non-linear interactions tend to shorten 
the cycle of change over that which would be predicted from linear terms. 

1 

11 

21 

31 

36 

41 

76 

m 

FIGURE 13. Changes in wave profile a t  3.036 c/s as functions of distance (cm) from the wave 
maker. h = 0.65 cm, B = 0.0475, temperature = 22 "C. 

The growth of the third harmonic at  n = 2.75 is depicted in figure 9. The third 
harmonic appears only after an appreciable growth of the second harmonic. The 
relative phase angle (y2 - 27,) increases initially because L2 is a positive number 
at n = 2-75. The amplitude of the second harmonic a2 at f i s t  increases but then 
decreases because of energy transfer t o  the third harmonic; u2 falls to a very 
small value, a t  a distance of about 18 cm, before (y2 - 27,) can increase to n. 
Non-linear interactions then cause a rapid readjustment to an angle which is 
favourable for the transfer of energy from a, to a2. 
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6. Results with shallow water layers 
If the wave maker is operated a t  9-86 cis and the height of the liquid layer is 

decreased the monotonic growth of second harmonic observed on deep layers 
(see figure 6 for n = 1-98) changes to a cyclic growth and decay of the type shown 
in figure 6 for n I: 1.76. As predicted by theory (see the locus of L, = 0 in figure 2), 
the observed frequency for resonant growth of the second harmonic decreased 
with decreasing depth. For example, a t  h = 0.714cm resonance was observed 
a t  8-79 CIS (24.5 "C) and at 0.635 cm it was at 8.12 CIS (23.6 "C). 

h 0.730 0.730 0.770 
CIS 6.973 4.453 4.005 
"C 23.8 20.6 26.0 
ka, 0.0840 0.0700 0.0591 

FIGURE 14. Change of wave profile near a depth of 0.75cm as a function of 
distance from the wave maker. 

A more spectacular growth of higher harmonics could be observed in shallow 
layers than in deep layers. Figure 13 shows observed changes of the wave profile 
on a layer of 0.65 cm with the wave maker operating at 3.04 CIS. The appearance 
of seven additional crests indicate a large growth of the eighth harmonic. The 
initial steepening of the primary wave is due mainly to growth of the second 
harmonic. Values of AL, for this condition are shown in table 2. It should be 
noted that all of them are less than 0.2 with the exception of L, - L,. 

Observed wave profiles on a water layer of 0.75 cm are shown in figure 14. At 
high enough frequencies the sinusoidal wave pattern does not change its shape 
as it propagates. As suggested by figure 2, successively higher harmonics appeared 
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as the frequency decreased. Figure 15 shows the change of wave pattern observed 
as the height of the water layer is decreased with the wave maker operating at 
5-12 c/s. Again the observations are qualitatively in agreement with the predic- 
tionsin figure 2. On deep water layers thesinusoidalwavepattern does not change. 
At a depth of 0.79 cm four additional crests can be observed. At 0.55 cm we see 
two additional crests, indicating appreciable growth of the third harmonic. At 
0.47 cm these two additional peaks are not as large as at  0.55 cm. Values of ALa 
associated with the shallow-water experiments are shown in table 2. 

1 

1 1  

16 

26 

47 

67 

87 

1 

1 1  

21 

31 

47 

67 

87 

I 

7 

17 

27 /Irv? 

48 

68 

h 0.79 0.55 0.47 
CIS 6.115 6.118 6.166 
"C 23.5 23.7 23.9 
&a, 0-0764 0.0565 0-0671 

 FIG^ 15. Change of wave profle near a frequency of 5 c/s as a function 
of distance from the wave maker. 

The interaction equations developed in $0 2 and 3 are valid only if the highest 
harmonic present is the fourth. It seems therefore they cannot be applied to all 
of the experimental observations made with shallow water layers. However, 
good agreement was obtained with experimental measurements for cases in 
which they are applicable. Figures 16 and 17 compare calculated and measured 
amplitudes and phase angles for a 0.75 in. layer when the wave maker is operated 
at 6.1 1 cis. 

7. Results on viscous damping 
The wave-energy ratio is given as 
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0.03 - 

8 v 

3 0.02 - 
2 

0.01 - 

0.04 

0 

a2 . 

0 10 20 30 40 

Distance from wave maker (cm) 

FIGURE 16. Observed variation of Fourier harmonics for h = 0.75cm (L, N 0), 6*16c/s, 
temperature = 22-7 "C. -, --, - - -, predicted; 0 ,  A ,  0, V, observed. 

0 10 20 30 

Distance from wave maker (om) 

FIGURE 17. Observed variation of the relative phase angle for 
h = 0.75 cm (L, N 0). -, predicted; 0, measured. 
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where the subscript 0 represents some reference point in space. Calculated values 
of this ratio for a frequency of 9.91 CIS are compared in figure 18. The straight 
line represents wave-energy dissipation which one would expect if the wave 
profile kept its initial sinusoidal form. The good agreement between theory and 
experiment indicates that the interface was clean and that viscous dissipation 
was properly accounted for in the experiments. The marked increase in viscous 
dissipation because of the generation of higher harmonics is clearly demonstrated. 

- Linear theory 3 

t-c 
0.2 t 

I I I I I I 
0 10 20 30 40 50 

Distance from wave maker (om) 

FIGURE 18. Observed dissipation of wave energy for n = 1.98. 0 ,  measured. 

8. Results on wave packets 
Wave packets with approximately 10 waves in one envelope and with a maxi- 

mum steepness of ka, N 0.03 were studied. Distortion was observed for n = 1.48 
to 2-95, but the most spectacular results were obtained close to the resonance 
condition. Figure 19 shows the change of the wave packet as it propagates for 
the case n = 2.01. It is seen that the second harmonic formed by non-linear 
interactions eventually accumulates in the front part of the packet because it has 
a higher group velocity than the first harmonic. The group velocity of the first 
harmonic has been calculated from the distance between the probe and the 
wave maker and the time elapsed between the input of an electric signal to the 
wave maker and the detection of a signal by the probe. Observedgroup velocities 
are in good agreement with those predicted by linear theory. 

This work has been supported by the National Science Foundation under 
grant NSF GK 3792 and NSP GK 13748. Much of the electronic equipment used 
in this study was designed by Mr R.Anderson in the Electronic Shop of the 
Department of Chemical Engineering, University of Illinois. 
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I 1 sec I 

2 cm 

0 

12 cm 

FIGURE 19. Development of a wave packet a t  n = 2.021 (9.81 cis) 
with distance from wave maker. 
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